
15
SCHEMA REFINEMENT AND

NORMAL FORMS

It is a melancholy truth that even great men have their poor relations.

—Charles Dickens

Conceptual database design gives us a set of relation schemas and integrity constraints

(ICs) that can be regarded as a good starting point for the final database design.

This initial design must be refined by taking the ICs into account more fully than is

possible with just the ER model constructs and also by considering performance criteria

and typical workloads. In this chapter we discuss how ICs can be used to refine the

conceptual schema produced by translating an ER model design into a collection of

relations. Workload and performance considerations are discussed in Chapter 16.

We concentrate on an important class of constraints called functional dependencies.

Other kinds of ICs, for example multivalued dependencies and join dependencies, also

provide useful information. They can sometimes reveal redundancies that cannot be de-

tected using functional dependencies alone. We discuss these other constraints briefly.

This chapter is organized as follows. Section 15.1 is an overview of the schema re-

finement approach discussed in this chapter. We introduce functional dependencies in

Section 15.2. In Section 15.3 we present several examples that highlight the problems

caused by redundancy and illustrate how relational schemas obtained by translating

an ER model design can nonetheless suffer from these problems. Thus, ER design is

a good starting point, but we still need techniques to detect schemas with these prob-

lems and to refine such schemas to eliminate the problems. We lay the foundation for

developing such schema refinement techniques in Section 15.4, where we show how to

reason with functional dependency information to infer additional dependencies from

a given set of dependencies.

We introduce normal forms for relations in Section 15.5; the normal form satisfied by

a relation is a measure of the redundancy in the relation. A relation with redundancy

can be refined by decomposing it, or replacing it with smaller relations that contain the

same information, but without redundancy. We discuss decompositions and desirable

properties of decompositions in Section 15.6. We show how relations can be decom-

posed into smaller relations that are in desirable normal forms in Section 15.7. Finally,

we discuss the use of other kinds of dependencies for database design in Section 15.8.

417

418 Chapter 15

15.1 INTRODUCTION TO SCHEMA REFINEMENT

We now present an overview of the problems that schema refinement is intended to

address and a refinement approach based on decompositions. Redundant storage of

information is the root cause of these problems. Although decomposition can eliminate

redundancy, it can lead to problems of its own and should be used with caution.

15.1.1 Problems Caused by Redundancy

Storing the same information redundantly, that is, in more than one place within a

database, can lead to several problems:

Redundant storage: Some information is stored repeatedly.

Update anomalies: If one copy of such repeated data is updated, an inconsis-

tency is created unless all copies are similarly updated.

Insertion anomalies: It may not be possible to store some information unless

some other information is stored as well.

Deletion anomalies: It may not be possible to delete some information without

losing some other information as well.

Consider a relation obtained by translating a variant of the Hourly Emps entity set

from Chapter 2:

Hourly Emps(ssn, name, lot, rating, hourly wages, hours worked)

In this chapter we will omit attribute type information for brevity, since our focus is on

the grouping of attributes into relations. We will often abbreviate an attribute name

to a single letter and refer to a relation schema by a string of letters, one per attribute.

For example, we will refer to the Hourly Emps schema as SNLRWH (W denotes the

hourly wages attribute).

The key for Hourly Emps is ssn. In addition, suppose that the hourly wages attribute

is determined by the rating attribute. That is, for a given rating value, there is only

one permissible hourly wages value. This IC is an example of a functional dependency.

It leads to possible redundancy in the relation Hourly Emps, as illustrated in Figure

15.1.

If the same value appears in the rating column of two tuples, the IC tells us that the

same value must appear in the hourly wages column as well. This redundancy has

several negative consequences:

Schema Refinement and Normal Forms 419

ssn name lot rating hourly wages hours worked

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

Figure 15.1 An Instance of the Hourly Emps Relation

Some information is stored multiple times. For example, the rating value 8 cor-

responds to the hourly wage 10, and this association is repeated three times. In

addition to wasting space by storing the same information many times, redun-

dancy leads to potential inconsistency. For example, the hourly wages in the first

tuple could be updated without making a similar change in the second tuple,

which is an example of an update anomaly. Also, we cannot insert a tuple for an

employee unless we know the hourly wage for the employee’s rating value, which

is an example of an insertion anomaly.

If we delete all tuples with a given rating value (e.g., we delete the tuples for

Smethurst and Guldu) we lose the association between that rating value and its

hourly wage value (a deletion anomaly).

Let us consider whether the use of null values can address some of these problems.

Clearly, null values cannot help eliminate redundant storage or update anomalies. It

appears that they can address insertion and deletion anomalies. For instance, to deal

with the insertion anomaly example, we can insert an employee tuple with null values in

the hourly wage field. However, null values cannot address all insertion anomalies. For

example, we cannot record the hourly wage for a rating unless there is an employee with

that rating, because we cannot store a null value in the ssn field, which is a primary key

field. Similarly, to deal with the deletion anomaly example, we might consider storing

a tuple with null values in all fields except rating and hourly wages if the last tuple

with a given rating would otherwise be deleted. However, this solution will not work

because it requires the ssn value to be null, and primary key fields cannot be null.

Thus, null values do not provide a general solution to the problems of redundancy,

even though they can help in some cases. We will not discuss the use of null values

further.

Ideally, we want schemas that do not permit redundancy, but at the very least we want

to be able to identify schemas that do allow redundancy. Even if we choose to accept

a schema with some of these drawbacks, perhaps owing to performance considerations,

we want to make an informed decision.

420 Chapter 15

15.1.2 Use of Decompositions

Intuitively, redundancy arises when a relational schema forces an association between

attributes that is not natural. Functional dependencies (and, for that matter, other

ICs) can be used to identify such situations and to suggest refinements to the schema.

The essential idea is that many problems arising from redundancy can be addressed

by replacing a relation with a collection of ‘smaller’ relations. Each of the smaller

relations contains a (strict) subset of the attributes of the original relation. We refer

to this process as decomposition of the larger relation into the smaller relations.

We can deal with the redundancy in Hourly Emps by decomposing it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)

Wages(rating, hourly wages)

The instances of these relations corresponding to the instance of Hourly Emps relation

in Figure 15.1 is shown in Figure 15.2.

ssn name lot rating hours worked

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

rating hourly wages

8 10

5 7

Figure 15.2 Instances of Hourly Emps2 and Wages

Note that we can easily record the hourly wage for any rating simply by adding a

tuple to Wages, even if no employee with that rating appears in the current instance

of Hourly Emps. Changing the wage associated with a rating involves updating a

single Wages tuple. This is more efficient than updating several tuples (as in the

original design), and it also eliminates the potential for inconsistency. Notice that the

insertion and deletion anomalies have also been eliminated.

Schema Refinement and Normal Forms 421

15.1.3 Problems Related to Decomposition

Unless we are careful, decomposing a relation schema can create more problems than

it solves. Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?

2. What problems (if any) does a given decomposition cause?

To help with the first question, several normal forms have been proposed for relations.

If a relation schema is in one of these normal forms, we know that certain kinds of

problems cannot arise. Considering the normal form of a given relation schema can

help us to decide whether or not to decompose it further. If we decide that a relation

schema must be decomposed further, we must choose a particular decomposition (i.e.,

a particular collection of smaller relations to replace the given relation).

With respect to the second question, two properties of decompositions are of particular

interest. The lossless-join property enables us to recover any instance of the decom-

posed relation from corresponding instances of the smaller relations. The dependency-

preservation property enables us to enforce any constraint on the original relation by

simply enforcing some contraints on each of the smaller relations. That is, we need

not perform joins of the smaller relations to check whether a constraint on the original

relation is violated.

A serious drawback of decompositions is that queries over the original relation may

require us to join the decomposed relations. If such queries are common, the perfor-

mance penalty of decomposing the relation may not be acceptable. In this case we

may choose to live with some of the problems of redundancy and not decompose the

relation. It is important to be aware of the potential problems caused by such resid-

ual redundancy in the design and to take steps to avoid them (e.g., by adding some

checks to application code). We will not discuss the impact of decompositions on query

performance in this chapter; this issue is covered in Section 16.8.

Our goal in this chapter is to explain some powerful concepts and design guidelines

based on the theory of functional dependencies. A good database designer should

have a firm grasp of normal forms and what problems they (do or do not) alleviate,

the technique of decomposition, and potential problems with decompositions. For

example, a designer will often ask questions such as these: Is a relation in a given

normal form? Is a decomposition dependency-preserving? Our objective is to explain

when to raise these questions and the significance of the answers.

422 Chapter 15

15.2 FUNCTIONAL DEPENDENCIES

A functional dependency (FD) is a kind of IC that generalizes the concept of a key.

Let R be a relation schema and let X and Y be nonempty sets of attributes in R. We

say that an instance r of R satisfies the FD X → Y 1 if the following holds for every

pair of tuples t1 and t2 in r:

If t1.X = t2.X, then t1.Y = t2.Y .

We use the notation t1.X to refer to the projection of tuple t1 onto the attributes

in X, in a natural extension of our TRC notation (see Chapter 4) t.a for referring to

attribute a of tuple t. An FD X → Y essentially says that if two tuples agree on the

values in attributes X, they must also agree on the values in attributes Y.

Figure 15.3 illustrates the meaning of the FD AB → C by showing an instance that

satisfies this dependency. The first two tuples show that an FD is not the same as

a key constraint: Although the FD is not violated, AB is clearly not a key for the

relation. The third and fourth tuples illustrate that if two tuples differ in either the

A field or the B field, they can differ in the C field without violating the FD. On the

other hand, if we add a tuple 〈a1, b1, c2, d1〉 to the instance shown in this figure, the

resulting instance would violate the FD; to see this violation, compare the first tuple

in the figure with the new tuple.

A B C D

a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

Figure 15.3 An Instance that Satisfies AB → C

Recall that a legal instance of a relation must satisfy all specified ICs, including all

specified FDs. As noted in Section 3.2, ICs must be identified and specified based on

the semantics of the real-world enterprise being modeled. By looking at an instance of

a relation, we might be able to tell that a certain FD does not hold. However, we can

never deduce that an FD does hold by looking at one or more instances of the relation

because an FD, like other ICs, is a statement about all possible legal instances of the

relation.

1X → Y is read as X functionally determines Y, or simply as X determines Y.

Schema Refinement and Normal Forms 423

A primary key constraint is a special case of an FD. The attributes in the key play

the role of X, and the set of all attributes in the relation plays the role of Y. Note,

however, that the definition of an FD does not require that the set X be minimal; the

additional minimality condition must be met for X to be a key. If X → Y holds, where

Y is the set of all attributes, and there is some subset V of X such that V → Y holds,

then X is a superkey; if V is a strict subset of X, then X is not a key.

In the rest of this chapter, we will see several examples of FDs that are not key

constraints.

15.3 EXAMPLES MOTIVATING SCHEMA REFINEMENT

It is natural to ask whether we need to decompose relations produced by translating

an ER diagram. Shouldn’t a good ER design lead to a collection of good relations?

Unfortunately, ER design can generate some schemas with redundancy problems, be-

cause it is a complex, subjective process, and certain constraints are not expressible

in terms of ER diagrams. The examples in this section are intended to illustrate why

decomposition of relations produced through ER design might be necessary.

15.3.1 Constraints on an Entity Set

Consider the Hourly Emps relation again. The constraint that attribute ssn is a key

can be expressed as an FD:

{ssn} → {ssn, name, lot, rating, hourly wages, hours worked}

For brevity, we will write this FD as S → SNLRWH, using a single letter to denote each

attribute and omitting the set braces, but the reader should remember that both sides

of an FD contain sets of attributes. In addition, the constraint that the hourly wages

attribute is determined by the rating attribute is an FD: R → W.

As we saw in Section 15.1.1, this FD led to redundant storage of rating–wage associ-

ations. It cannot be expressed in terms of the ER model. Only FDs that determine

all attributes of a relation (i.e., key constraints) can be expressed in the ER model.

Therefore, we could not detect it when we considered Hourly Emps as an entity set

during ER modeling.

We could argue that the problem with the original design was an artifact of a poor ER

design, which could have been avoided by introducing an entity set called Wage Table

(with attributes rating and hourly wages) and a relationship set Has Wages associating

Hourly Emps and Wage Table. The point, however, is that we could easily arrive at the

original design given the subjective nature of ER modeling. Having formal techniques

to identify the problem with this design, and to guide us to a better design, is very

424 Chapter 15

useful. The value of such techniques cannot be underestimated when designing large

schemas—schemas with more than a hundred tables are not uncommon!

15.3.2 Constraints on a Relationship Set

The previous example illustrated how FDs can help to refine the subjective decisions

made during ER design, but one could argue that the best possible ER diagram would

have led to the same final set of relations. Our next example shows how FD information

can lead to a set of relations that eliminates some redundancy problems and is unlikely

to be arrived at solely through ER design.

We revisit an example from Chapter 2. Suppose that we have entity sets Parts, Sup-

pliers, and Departments, as well as a relationship set Contracts that involves all of

them. We refer to the schema for Contracts as CQPSD. A contract with contract id

C specifies that a supplier S will supply some quantity Q of a part P to a department

D. (We have added the contract id field C to the version of the Contracts relation that

was discussed in Chapter 2.)

We might have a policy that a department purchases at most one part from any given

supplier. Thus, if there are several contracts between the same supplier and depart-

ment, we know that the same part must be involved in all of them. This constraint is

an FD, DS → P.

Again we have redundancy and its associated problems. We can address this situ-

ation by decomposing Contracts into two relations with attributes CQSD and SDP.

Intuitively, the relation SDP records the part supplied to a department by a supplier,

and the relation CQSD records additional information about a contract. It is unlikely

that we would arrive at such a design solely through ER modeling, since it is hard to

formulate an entity or relationship that corresponds naturally to CQSD.

15.3.3 Identifying Attributes of Entities

This example illustrates how a careful examination of FDs can lead to a better under-

standing of the entities and relationships underlying the relational tables; in particular,

it shows that attributes can easily be associated with the ‘wrong’ entity set during ER

design. The ER diagram in Figure 15.4 shows a relationship set called Works In that

is similar to the Works In relationship set of Chapter 2, but with an additional key

constraint indicating that an employee can work in at most one department. (Observe

the arrow connecting Employees to Works In.)

Using the key constraint, we can translate this ER diagram into two relations:

Workers(ssn, name, lot, did, since)

Schema Refinement and Normal Forms 425

dname

budgetdid

since

name

Works_In DepartmentsEmployees

ssn lot

Figure 15.4 The Works In Relationship Set

Departments(did, dname, budget)

The entity set Employees and the relationship set Works In are mapped to a single re-

lation, Workers. This translation is based on the second approach discussed in Section

2.4.1.

Now suppose that employees are assigned parking lots based on their department, and

that all employees in a given department are assigned the same lot. This constraint is

not expressible with respect to the ER diagram of Figure 15.4. It is another example

of an FD: did → lot. The redundancy in this design can be eliminated by decomposing

the Workers relation into two relations:

Workers2(ssn, name, did, since)

Dept Lots(did, lot)

The new design has much to recommend it. We can change the lots associated with a

department by updating a single tuple in the second relation (i.e., no update anoma-

lies). We can associate a lot with a department even if it currently has no employees,

without using null values (i.e., no deletion anomalies). We can add an employee to a

department by inserting a tuple to the first relation even if there is no lot associated

with the employee’s department (i.e., no insertion anomalies).

Examining the two relations Departments and Dept Lots, which have the same key,

we realize that a Departments tuple and a Dept Lots tuple with the same key value

describe the same entity. This observation is reflected in the ER diagram shown in

Figure 15.5.

Translating this diagram into the relational model would yield:

Workers2(ssn, name, did, since)

Departments(did, dname, budget, lot)

426 Chapter 15

budgetdid

since

name

Works_In DepartmentsEmployees

ssn

lotdname

Figure 15.5 Refined Works In Relationship Set

It seems intuitive to associate lots with employees; on the other hand, the ICs reveal

that in this example lots are really associated with departments. The subjective process

of ER modeling could miss this point. The rigorous process of normalization would

not.

15.3.4 Identifying Entity Sets

Consider a variant of the Reserves schema used in earlier chapters. Let Reserves contain

attributes S, B, and D as before, indicating that sailor S has a reservation for boat B

on day D. In addition, let there be an attribute C denoting the credit card to which

the reservation is charged. We use this example to illustrate how FD information can

be used to refine an ER design. In particular, we discuss how FD information can help

to decide whether a concept should be modeled as an entity or as an attribute.

Suppose that every sailor uses a unique credit card for reservations. This constraint

is expressed by the FD S → C. This constraint indicates that in relation Reserves,

we store the credit card number for a sailor as often as we have reservations for that

sailor, and we have redundancy and potential update anomalies. A solution is to

decompose Reserves into two relations with attributes SBD and SC. Intuitively, one

holds information about reservations, and the other holds information about credit

cards.

It is instructive to think about an ER design that would lead to these relations. One

approach is to introduce an entity set called Credit Cards, with the sole attribute

cardno, and a relationship set Has Card associating Sailors and Credit Cards. By

noting that each credit card belongs to a single sailor, we can map Has Card and

Credit Cards to a single relation with attributes SC. We would probably not model

credit card numbers as entities if our main interest in card numbers is to indicate how

a reservation is to be paid for; it suffices to use an attribute to model card numbers in

this situation.

Schema Refinement and Normal Forms 427

A second approach is to make cardno an attribute of Sailors. But this approach is

not very natural—a sailor may have several cards, and we are not interested in all of

them. Our interest is in the one card that is used to pay for reservations, which is best

modeled as an attribute of the relationship Reserves.

A helpful way to think about the design problem in this example is that we first make

cardno an attribute of Reserves and then refine the resulting tables by taking into

account the FD information. (Whether we refine the design by adding cardno to the

table obtained from Sailors or by creating a new table with attributes SC is a separate

issue.)

15.4 REASONING ABOUT FUNCTIONAL DEPENDENCIES

The discussion up to this point has highlighted the need for techniques that allow us to

carefully examine and further refine relations obtained through ER design (or, for that

matter, through other approaches to conceptual design). Before proceeding with the

main task at hand, which is the discussion of such schema refinement techniques, we

digress to examine FDs in more detail because they play such a central role in schema

analysis and refinement.

Given a set of FDs over a relation schema R, there are typically several additional FDs

that hold over R whenever all of the given FDs hold. As an example, consider:

Workers(ssn, name, lot, did, since)

We know that ssn → did holds, since ssn is the key, and FD did → lot is given to hold.

Therefore, in any legal instance of Workers, if two tuples have the same ssn value, they

must have the same did value (from the first FD), and because they have the same did

value, they must also have the same lot value (from the second FD). Thus, the FD ssn

→ lot also holds on Workers.

We say that an FD f is implied by a given set F of FDs if f holds on every relation

instance that satisfies all dependencies in F, that is, f holds whenever all FDs in F

hold. Note that it is not sufficient for f to hold on some instance that satisfies all

dependencies in F; rather, f must hold on every instance that satisfies all dependencies

in F.

15.4.1 Closure of a Set of FDs

The set of all FDs implied by a given set F of FDs is called the closure of F and is

denoted as F+. An important question is how we can infer, or compute, the closure

of a given set F of FDs. The answer is simple and elegant. The following three rules,

called Armstrong’s Axioms, can be applied repeatedly to infer all FDs implied by

428 Chapter 15

a set F of FDs. We use X, Y, and Z to denote sets of attributes over a relation schema

R:

Reflexivity: If X ⊇ Y, then X → Y.

Augmentation: If X → Y, then XZ → YZ for any Z.

Transitivity: If X → Y and Y → Z, then X → Z.

Armstrong’s Axioms are sound in that they generate only FDs in F+ when applied

to a set F of FDs. They are complete in that repeated application of these rules will

generate all FDs in the closure F+. (We will not prove these claims.) It is convenient

to use some additional rules while reasoning about F+:

Union: If X → Y and X → Z, then X → YZ.

Decomposition: If X → YZ, then X → Y and X → Z.

These additional rules are not essential; their soundness can be proved using Arm-

strong’s Axioms.

To illustrate the use of these inference rules for FDs, consider a relation schema ABC

with FDs A → B and B → C. A trivial FD is one in which the right side contains

only attributes that also appear on the left side; such dependencies always hold due

to reflexivity. Using reflexivity, we can generate all trivial dependencies, which are of

the form:

X → Y, where Y ⊆ X, X ⊆ ABC, and Y ⊆ ABC.

From transitivity we get A → C. From augmentation we get the nontrivial dependen-

cies:

AC → BC, AB → AC, AB → CB.

As a second example, we use a more elaborate version of the Contracts relation:

Contracts(contractid, supplierid, projectid, deptid, partid, qty, value)

We denote the schema for Contracts as CSJDPQV. The meaning of a tuple in this

relation is that the contract with contractid C is an agreement that supplier S (sup-

plierid) will supply Q items of part P (partid) to project J (projectid) associated with

department D (deptid); the value V of this contract is equal to value.

The following ICs are known to hold:

Schema Refinement and Normal Forms 429

1. The contract id C is a key: C → CSJDPQV.

2. A project purchases a given part using a single contract: JP → C.

3. A department purchases at most one part from a supplier: SD → P.

Several additional FDs hold in the closure of the set of given FDs:

From JP → C, C → CSJDPQV and transitivity, we infer JP → CSJDPQV.

From SD → P and augmentation, we infer SDJ → JP.

From SDJ → JP, JP → CSJDPQV and transitivity, we infer SDJ → CSJDPQV. (Inci-

dentally, while it may appear tempting to do so, we cannot conclude SD → CSDPQV,

canceling J on both sides. FD inference is not like arithmetic multiplication!)

We can infer several additional FDs that are in the closure by using augmentation or

decomposition. For example, from C → CSJDPQV, using decomposition we can infer:

C → C, C → S, C → J, C → D, etc.

Finally, we have a number of trivial FDs from the reflexivity rule.

15.4.2 Attribute Closure

If we just want to check whether a given dependency, say, X → Y, is in the closure of

a set F of FDs, we can do so efficiently without computing F+. We first compute the

attribute closure X+ with respect to F, which is the set of attributes A such that X

→ A can be inferred using the Armstrong Axioms. The algorithm for computing the

attribute closure of a set X of attributes is shown in Figure 15.6.

closure = X;

repeat until there is no change: {

if there is an FD U → V in F such that U ⊆ closure,

then set closure = closure ∪ V

}

Figure 15.6 Computing the Attribute Closure of Attribute Set X

This algorithm can be modified to find keys by starting with set X containing a single

attribute and stopping as soon as closure contains all attributes in the relation schema.

430 Chapter 15

By varying the starting attribute and the order in which the algorithm considers FDs,

we can obtain all candidate keys.

15.5 NORMAL FORMS

Given a relation schema, we need to decide whether it is a good design or whether

we need to decompose it into smaller relations. Such a decision must be guided by

an understanding of what problems, if any, arise from the current schema. To provide

such guidance, several normal forms have been proposed. If a relation schema is in

one of these normal forms, we know that certain kinds of problems cannot arise.

The normal forms based on FDs are first normal form (1NF), second normal form

(2NF), third normal form (3NF), and Boyce-Codd normal form (BCNF). These forms

have increasingly restrictive requirements: Every relation in BCNF is also in 3NF,

every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF. A relation

is in first normal form if every field contains only atomic values, that is, not lists or

sets. This requirement is implicit in our definition of the relational model. Although

some of the newer database systems are relaxing this requirement, in this chapter we

will assume that it always holds. 2NF is mainly of historical interest. 3NF and BCNF

are important from a database design standpoint.

While studying normal forms, it is important to appreciate the role played by FDs.

Consider a relation schema R with attributes ABC. In the absence of any ICs, any

set of ternary tuples is a legal instance and there is no potential for redundancy. On

the other hand, suppose that we have the FD A → B. Now if several tuples have the

same A value, they must also have the same B value. This potential redundancy can

be predicted using the FD information. If more detailed ICs are specified, we may be

able to detect more subtle redundancies as well.

We will primarily discuss redundancy that is revealed by FD information. In Sec-

tion 15.8, we discuss more sophisticated ICs called multivalued dependencies and join

dependencies and normal forms based on them.

15.5.1 Boyce-Codd Normal Form

Let R be a relation schema, X be a subset of the attributes of R, and let A be an

attribute of R. R is in Boyce-Codd normal form if for every FD X → A that holds

over R, one of the following statements is true:

A ∈ X; that is, it is a trivial FD, or

X is a superkey.

Schema Refinement and Normal Forms 431

Note that if we are given a set F of FDs, according to this definition, we must consider

each dependency X → A in the closure F+ to determine whether R is in BCNF.

However, we can prove that it is sufficient to check whether the left side of each

dependency in F is a superkey (by computing the attribute closure and seeing if it

includes all attributes of R).

Intuitively, in a BCNF relation the only nontrivial dependencies are those in which

a key determines some attribute(s). Thus, each tuple can be thought of as an entity

or relationship, identified by a key and described by the remaining attributes. Kent

puts this colorfully, if a little loosely: “Each attribute must describe [an entity or

relationship identified by] the key, the whole key, and nothing but the key.” If we

use ovals to denote attributes or sets of attributes and draw arcs to indicate FDs, a

relation in BCNF has the structure illustrated in Figure 15.7, considering just one key

for simplicity. (If there are several candidate keys, each candidate key can play the

role of KEY in the figure, with the other attributes being the ones not in the chosen

candidate key.)

KEY Nonkey attr1 Nonkey attrkNonkey attr2

Figure 15.7 FDs in a BCNF Relation

BCNF ensures that no redundancy can be detected using FD information alone. It is

thus the most desirable normal form (from the point of view of redundancy) if we take

into account only FD information. This point is illustrated in Figure 15.8.

X Y A

x y1 a

x y2 ?

Figure 15.8 Instance Illustrating BCNF

This figure shows (two tuples in) an instance of a relation with three attributes X, Y,

and A. There are two tuples with the same value in the X column. Now suppose that

we know that this instance satisfies an FD X → A. We can see that one of the tuples

has the value a in the A column. What can we infer about the value in the A column

in the second tuple? Using the FD, we can conclude that the second tuple also has

the value a in this column. (Note that this is really the only kind of inference we can

make about values in the fields of tuples by using FDs.)

But isn’t this situation an example of redundancy? We appear to have stored the

value a twice. Can such a situation arise in a BCNF relation? No! If this relation is

432 Chapter 15

in BCNF, because A is distinct from X it follows that X must be a key. (Otherwise,

the FD X → A would violate BCNF.) If X is a key, then y1 = y2, which means that

the two tuples are identical. Since a relation is defined to be a set of tuples, we cannot

have two copies of the same tuple and the situation shown in Figure 15.8 cannot arise.

Thus, if a relation is in BCNF, every field of every tuple records a piece of information

that cannot be inferred (using only FDs) from the values in all other fields in (all tuples

of) the relation instance.

15.5.2 Third Normal Form

Let R be a relation schema, X be a subset of the attributes of R, and A be an attribute

of R. R is in third normal form if for every FD X → A that holds over R, one of the

following statements is true:

A ∈ X; that is, it is a trivial FD, or

X is a superkey, or

A is part of some key for R.

The definition of 3NF is similar to that of BCNF, with the only difference being

the third condition. Every BCNF relation is also in 3NF. To understand the third

condition, recall that a key for a relation is a minimal set of attributes that uniquely

determines all other attributes. A must be part of a key (any key, if there are several).

It is not enough for A to be part of a superkey, because the latter condition is satisfied

by each and every attribute! Finding all keys of a relation schema is known to be an

NP-complete problem, and so is the problem of determining whether a relation schema

is in 3NF.

Suppose that a dependency X → A causes a violation of 3NF. There are two cases:

X is a proper subset of some key K. Such a dependency is sometimes called a

partial dependency. In this case we store (X, A) pairs redundantly. As an

example, consider the Reserves relation with attributes SBDC from Section 15.3.4.

The only key is SBD, and we have the FD S → C. We store the credit card number

for a sailor as many times as there are reservations for that sailor.

X is not a proper subset of any key. Such a dependency is sometimes called a

transitive dependency because it means we have a chain of dependencies K

→ X → A. The problem is that we cannot associate an X value with a K value

unless we also associate an A value with an X value. As an example, consider

the Hourly Emps relation with attributes SNLRWH from Section 15.3.1. The

only key is S, but there is an FD R → W, which gives rise to the chain S → R

Schema Refinement and Normal Forms 433

→ W. The consequence is that we cannot record the fact that employee S has

rating R without knowing the hourly wage for that rating. This condition leads

to insertion, deletion, and update anomalies.

Partial dependencies are illustrated in Figure 15.9, and transitive dependencies are

illustrated in Figure 15.10. Note that in Figure 15.10, the set X of attributes may or

may not have some attributes in common with KEY; the diagram should be interpreted

as indicating only that X is not a subset of KEY.

KEY Attribute AAttributes X Case 1: A not in KEY

Figure 15.9 Partial Dependencies

Attribute AKEY Attributes X Case 1: A not in KEY

Case 2: A is in KEYKEY Attribute A Attributes X

Figure 15.10 Transitive Dependencies

The motivation for 3NF is rather technical. By making an exception for certain de-

pendencies involving key attributes, we can ensure that every relation schema can be

decomposed into a collection of 3NF relations using only decompositions that have

certain desirable properties (Section 15.6). Such a guarantee does not exist for BCNF

relations; the 3NF definition weakens the BCNF requirements just enough to make

this guarantee possible. We may therefore compromise by settling for a 3NF design.

As we shall see in Chapter 16, we may sometimes accept this compromise (or even

settle for a non-3NF schema) for other reasons as well.

Unlike BCNF, however, some redundancy is possible with 3NF. The problems associ-

ated with partial and transitive dependencies persist if there is a nontrivial dependency

X → A and X is not a superkey, even if the relation is in 3NF because A is part of

a key. To understand this point, let us revisit the Reserves relation with attributes

SBDC and the FD S → C, which states that a sailor uses a unique credit card to pay

for reservations. S is not a key, and C is not part of a key. (In fact, the only key is

SBD.) Thus, this relation is not in 3NF; (S, C) pairs are stored redundantly. However,

if we also know that credit cards uniquely identify the owner, we have the FD C →

434 Chapter 15

S, which means that CBD is also a key for Reserves. Therefore, the dependency S →

C does not violate 3NF, and Reserves is in 3NF. Nonetheless, in all tuples containing

the same S value, the same (S, C) pair is redundantly recorded.

For completeness, we remark that the definition of second normal form is essentially

that partial dependencies are not allowed. Thus, if a relation is in 3NF (which precludes

both partial and transitive dependencies), it is also in 2NF.

15.6 DECOMPOSITIONS

As we have seen, a relation in BCNF is free of redundancy (to be precise, redundancy

that can be detected using FD information), and a relation schema in 3NF comes

close. If a relation schema is not in one of these normal forms, the FDs that cause

a violation can give us insight into the potential problems. The main technique for

addressing such redundancy-related problems is decomposing a relation schema into

relation schemas with fewer attributes.

A decomposition of a relation schema R consists of replacing the relation schema

by two (or more) relation schemas that each contain a subset of the attributes of R and

together include all attributes in R. Intuitively, we want to store the information in

any given instance of R by storing projections of the instance. This section examines

the use of decompositions through several examples.

We begin with the Hourly Emps example from Section 15.3.1. This relation has at-

tributes SNLRWH and two FDs: S → SNLRWH and R → W. Since R is not a key

and W is not part of any key, the second dependency causes a violation of 3NF.

The alternative design consisted of replacing Hourly Emps with two relations having

attributes SNLRH and RW. S → SNLRH holds over SNLRH, and S is a key. R → W

holds over RW, and R is a key for RW. The only other dependencies that hold over

these schemas are those obtained by augmentation. Thus both schemas are in BCNF.

Our decision to decompose SNLRWH into SNLRH and RW, rather than, say, SNLR

and LRWH, was not just a good guess. It was guided by the observation that the

dependency R → W caused the violation of 3NF; the most natural way to deal with

this violation is to remove the attribute W from this schema. To compensate for

removing W from the main schema, we can add a relation RW, because each R value

is associated with at most one W value according to the FD R → W.

A very important question must be asked at this point: If we replace a legal instance r

of relation schema SNLRWH with its projections on SNLRH (r1) and RW (r2), can we

recover r from r1 and r2? The decision to decompose SNLRWH into SNLRH and RW

is equivalent to saying that we will store instances r1 and r2 instead of r. However,

Schema Refinement and Normal Forms 435

it is the instance r that captures the intended entities or relationships. If we cannot

compute r from r1 and r2, our attempt to deal with redundancy has effectively thrown

out the baby with the bathwater. We consider this issue in more detail below.

15.6.1 Lossless-Join Decomposition

Let R be a relation schema and let F be a set of FDs over R. A decomposition of R into

two schemas with attribute sets X and Y is said to be a lossless-join decomposition

with respect to F if for every instance r of R that satisfies the dependencies in F,

πX(r) ⊲⊳ πY (r) = r.

This definition can easily be extended to cover a decomposition of R into more than

two relations. It is easy to see that r ⊆ πX(r) ⊲⊳ πY (r) always holds. In general,

though, the other direction does not hold. If we take projections of a relation and

recombine them using natural join, we typically obtain some tuples that were not in

the original relation. This situation is illustrated in Figure 15.11.

S P D

s1 p1 d1

s2 p2 d2

s3 p1 d3

Instance r

S P

s1 p1

s2 p2

s3 p1

πSP (r)

P D

p1 d1

p2 d2

p1 d3

πPD(r)

S P D

s1 p1 d1

s2 p2 d2

s3 p1 d3

s1 p1 d3

s3 p1 d1

πSP (r) ⊲⊳ πPD(r)

Figure 15.11 Instances Illustrating Lossy Decompositions

By replacing the instance r shown in Figure 15.11 with the instances πSP (r) and

πPD(r), we lose some information. In particular, suppose that the tuples in r denote

relationships. We can no longer tell that the relationships (s1, p1, d3) and (s3, p1, d1)

do not hold. The decomposition of schema SPD into SP and PD is therefore a ‘lossy’

decomposition if the instance r shown in the figure is legal, that is, if this instance

could arise in the enterprise being modeled. (Observe the similarities between this

example and the Contracts relationship set in Section 2.5.3.)

All decompositions used to eliminate redundancy must be lossless. The following simple

test is very useful:

Let R be a relation and F be a set of FDs that hold over R. The decomposition

of R into relations with attribute sets R1 and R2 is lossless if and only if F+

contains either the FD R1 ∩ R2 → R1 or the FD R1 ∩ R2 → R2.

436 Chapter 15

In other words, the attributes common to R1 and R2 must contain a key for either R1 or

R2. If a relation is decomposed into two relations, this test is a necessary and sufficient

condition for the decomposition to be lossless-join.2 If a relation is decomposed into

more than two relations, an efficient (time polynomial in the size of the dependency

set) algorithm is available to test whether or not the decomposition is lossless, but we

will not discuss it.

Consider the Hourly Emps relation again. It has attributes SNLRWH, and the FD

R → W causes a violation of 3NF. We dealt with this violation by decomposing the

relation into SNLRH and RW. Since R is common to both decomposed relations, and

R → W holds, this decomposition is lossless-join.

This example illustrates a general observation:

If an FD X → Y holds over a relation R and X∩Y is empty, the decomposition

of R into R − Y and XY is lossless.

X appears in both R−Y (since X ∩ Y is empty) and XY, and it is a key for XY. Thus,

the above observation follows from the test for a lossless-join decomposition.

Another important observation has to do with repeated decompositions. Suppose that

a relation R is decomposed into R1 and R2 through a lossless-join decomposition, and

that R1 is decomposed into R11 and R12 through another lossless-join decomposition.

Then the decomposition of R into R11, R12, and R2 is lossless-join; by joining R11

and R12 we can recover R1, and by then joining R1 and R2, we can recover R.

15.6.2 Dependency-Preserving Decomposition

Consider the Contracts relation with attributes CSJDPQV from Section 15.4.1. The

given FDs are C → CSJDPQV, JP → C, and SD → P. Because SD is not a key the

dependency SD → P causes a violation of BCNF.

We can decompose Contracts into two relations with schemas CSJDQV and SDP to

address this violation; the decomposition is lossless-join. There is one subtle problem,

however. We can enforce the integrity constraint JP → C easily when a tuple is

inserted into Contracts by ensuring that no existing tuple has the same JP values

(as the inserted tuple) but different C values. Once we decompose Contracts into

CSJDQV and SDP, enforcing this constraint requires an expensive join of the two

relations whenever a tuple is inserted into CSJDQV. We say that this decomposition

is not dependency-preserving.

2It is necessary only if we assume that only functional dependencies can be specified as integrity

constraints. See Exercise 15.8.

Schema Refinement and Normal Forms 437

Intuitively, a dependency-preserving decomposition allows us to enforce all FDs by ex-

amining a single relation instance on each insertion or modification of a tuple. (Note

that deletions cannot cause violation of FDs.) To define dependency-preserving de-

compositions precisely, we have to introduce the concept of a projection of FDs.

Let R be a relation schema that is decomposed into two schemas with attribute sets

X and Y, and let F be a set of FDs over R. The projection of F on X is the set of

FDs in the closure F+ (not just F !) that involve only attributes in X. We will denote

the projection of F on attributes X as FX . Note that a dependency U → V in F+ is

in FX only if all the attributes in U and V are in X.

The decomposition of relation schema R with FDs F into schemas with attribute sets

X and Y is dependency-preserving if (FX ∪ FY)+ = F+. That is, if we take the

dependencies in FX and FY and compute the closure of their union, we get back all

dependencies in the closure of F. Therefore, we need to enforce only the dependencies

in FX and FY ; all FDs in F+ are then sure to be satisfied. To enforce FX , we need

to examine only relation X (on inserts to that relation). To enforce FY , we need to

examine only relation Y.

To appreciate the need to consider the closure F+ while computing the projection of

F, suppose that a relation R with attributes ABC is decomposed into relations with

attributes AB and BC. The set F of FDs over R includes A → B, B → C, and C

→ A. Of these, A → B is in FAB and B → C is in FBC . But is this decomposition

dependency-preserving? What about C → A? This dependency is not implied by the

dependencies listed (thus far) for FAB and FBC .

The closure of F contains all dependencies in F plus A → C, B → A, and C → B.

Consequently, FAB also contains B → A, and FBC contains C → B. Thus, FAB ∪FBC

contains A → B, B → C, B → A, and C → B. The closure of the dependencies in FAB

and FBC now includes C → A (which follows from C → B, B → A, and transitivity).

Thus, the decomposition preserves the dependency C → A.

A direct application of the definition gives us a straightforward algorithm for testing

whether a decomposition is dependency-preserving. (This algorithm is exponential in

the size of the dependency set; a polynomial algorithm is available, although we will

not discuss it.)

We began this section with an example of a lossless-join decomposition that was not

dependency-preserving. Other decompositions are dependency-preserving, but not

lossless. A simple example consists of a relation ABC with FD A → B that is de-

composed into AB and BC.

438 Chapter 15

15.7 NORMALIZATION

Having covered the concepts needed to understand the role of normal forms and de-

compositions in database design, we now consider algorithms for converting relations

to BCNF or 3NF. If a relation schema is not in BCNF, it is possible to obtain a

lossless-join decomposition into a collection of BCNF relation schemas. Unfortunately,

there may not be any dependency-preserving decomposition into a collection of BCNF

relation schemas. However, there is always a dependency-preserving, lossless-join de-

composition into a collection of 3NF relation schemas.

15.7.1 Decomposition into BCNF

We now present an algorithm for decomposing a relation schema R into a collection of

BCNF relation schemas:

1. Suppose that R is not in BCNF. Let X ⊂ R, A be a single attribute in R, and X

→ A be an FD that causes a violation of BCNF. Decompose R into R − A and

XA.

2. If either R − A or XA is not in BCNF, decompose them further by a recursive

application of this algorithm.

R − A denotes the set of attributes other than A in R, and XA denotes the union of

attributes in X and A. Since X → A violates BCNF, it is not a trivial dependency;

further, A is a single attribute. Therefore, A is not in X; that is, X∩A is empty. Thus,

each decomposition carried out in Step (1) is lossless-join.

The set of dependencies associated with R − A and XA is the projection of F onto

their attributes. If one of the new relations is not in BCNF, we decompose it further in

Step (2). Since a decomposition results in relations with strictly fewer attributes, this

process will terminate, leaving us with a collection of relation schemas that are all in

BCNF. Further, joining instances of the (two or more) relations obtained through this

algorithm will yield precisely the corresponding instance of the original relation (i.e.,

the decomposition into a collection of relations that are each in BCNF is a lossless-join

decomposition).

Consider the Contracts relation with attributes CSJDPQV and key C. We are given

FDs JP → C and SD → P. By using the dependency SD → P to guide the decompo-

sition, we get the two schemas SDP and CSJDQV. SDP is in BCNF. Suppose that we

also have the constraint that each project deals with a single supplier: J → S. This

means that the schema CSJDQV is not in BCNF. So we decompose it further into JS

and CJDQV. C → JDQV holds over CJDQV; the only other FDs that hold are those

obtained from this FD by augmentation, and therefore all FDs contain a key in the left

Schema Refinement and Normal Forms 439

side. Thus, each of the schemas SDP, JS, and CJDQV is in BCNF, and this collection

of schemas also represents a lossless-join decomposition of CSJDQV.

The steps in this decomposition process can be visualized as a tree, as shown in Figure

15.12. The root is the original relation CSJDPQV, and the leaves are the BCNF

relations that are the result of the decomposition algorithm, namely, SDP, JS, and

CSDQV. Intuitively, each internal node is replaced by its children through a single

decomposition step that is guided by the FD shown just below the node.

SD P

J S

CSJDPQV

CSJDQVSDP

JS CJDQV

Figure 15.12 Decomposition of CSJDQV into SDP, JS, and CJDQV

Redundancy in BCNF Revisited

The decomposition of CSJDQV into SDP, JS, and CJDQV is not dependency-preserving.

Intuitively, dependency JP → C cannot be enforced without a join. One way to deal

with this situation is to add a relation with attributes CJP. In effect, this solution

amounts to storing some information redundantly in order to make the dependency

enforcement cheaper.

This is a subtle point: Each of the schemas CJP, SDP, JS, and CJDQV is in BCNF,

yet there is some redundancy that can be predicted by FD information. In particular,

if we join the relation instances for SDP and CJDQV and project onto the attributes

CJP, we must get exactly the instance stored in the relation with schema CJP. We saw

in Section 15.5.1 that there is no such redundancy within a single BCNF relation. The

current example shows that redundancy can still occur across relations, even though

there is no redundancy within a relation.

440 Chapter 15

Alternatives in Decomposing to BCNF

Suppose that several dependencies violate BCNF. Depending on which of these de-

pendencies we choose to guide the next decomposition step, we may arrive at quite

different collections of BCNF relations. Consider Contracts. We just decomposed it

into SDP, JS, and CJDQV. Suppose that we choose to decompose the original relation

CSJDPQV into JS and CJDPQV, based on the FD J → S. The only dependencies

that hold over CJDPQV are JP → C and the key dependency C → CJDPQV. Since

JP is a key, CJDPQV is in BCNF. Thus, the schemas JS and CJDPQV represent a

lossless-join decomposition of Contracts into BCNF relations.

The lesson to be learned here is that the theory of dependencies can tell us when there is

redundancy and give us clues about possible decompositions to address the problem,

but it cannot discriminate between decomposition alternatives. A designer has to

consider the alternatives and choose one based on the semantics of the application.

BCNF and Dependency-Preservation

Sometimes, there simply is no decomposition into BCNF that is dependency-preserving.

As an example, consider the relation schema SBD, in which a tuple denotes that sailor

S has reserved boat B on date D. If we have the FDs SB → D (a sailor can reserve a

given boat for at most one day) and D → B (on any given day at most one boat can

be reserved), SBD is not in BCNF because D is not a key. If we try to decompose it,

however, we cannot preserve the dependency SB → D.

15.7.2 Decomposition into 3NF *

Clearly, the approach that we outlined for lossless-join decomposition into BCNF will

also give us a lossless-join decomposition into 3NF. (Typically, we can stop a little

earlier if we are satisfied with a collection of 3NF relations.) But this approach does

not ensure dependency-preservation.

A simple modification, however, yields a decomposition into 3NF relations that is

lossless-join and dependency-preserving. Before we describe this modification, we need

to introduce the concept of a minimal cover for a set of FDs.

Minimal Cover for a Set of FDs

A minimal cover for a set F of FDs is a set G of FDs such that:

1. Every dependency in G is of the form X → A, where A is a single attribute.

2. The closure F+ is equal to the closure G+.

Schema Refinement and Normal Forms 441

3. If we obtain a set H of dependencies from G by deleting one or more dependencies,

or by deleting attributes from a dependency in G, then F+ 6= H+.

Intuitively, a minimal cover for a set F of FDs is an equivalent set of dependencies that

is minimal in two respects: (1) Every dependency is as small as possible; that is, each

attribute on the left side is necessary and the right side is a single attribute. (2) Every

dependency in it is required in order for the closure to be equal to F+.

As an example, let F be the set of dependencies:

A → B, ABCD → E, EF → G, EF → H, and ACDF → EG.

First, let us rewrite ACDF → EG so that every right side is a single attribute:

ACDF → E and ACDF → G.

Next consider ACDF → G. This dependency is implied by the following FDs:

A → B, ABCD → E, and EF → G.

Therefore, we can delete it. Similarly, we can delete ACDF → E. Next consider ABCD

→ E. Since A → B holds, we can replace it with ACD → E. (At this point, the reader

should verify that each remaining FD is minimal and required.) Thus, a minimal cover

for F is the set:

A → B, ACD → E, EF → G, and EF → H.

The preceding example suggests a general algorithm for obtaining a minimal cover of

a set F of FDs:

1. Put the FDs in a standard form: Obtain a collection G of equivalent FDs

with a single attribute on the right side (using the decomposition axiom).

2. Minimize the left side of each FD: For each FD in G, check each attribute in

the left side to see if it can be deleted while preserving equivalence to F+.

3. Delete redundant FDs: Check each remaining FD in G to see if it can be

deleted while preserving equivalence to F+.

Note that the order in which we consider FDs while applying these steps could produce

different minimal covers; there could be several minimal covers for a given set of FDs.

More important, it is necessary to minimize the left sides of FDs before checking for

redundant FDs. If these two steps are reversed, the final set of FDs could still contain

some redundant FDs (i.e., not be a minimal cover), as the following example illustrates.

Let F be the set of dependencies, each of which is already in the standard form:

442 Chapter 15

ABCD → E, E → D, A → B, and AC → D.

Observe that none of these FDs is redundant; if we checked for redundant FDs first,

we would get the same set of FDs F. The left side of ABCD → E can be replaced

by AC while preserving equivalence to F+, and we would stop here if we checked for

redundant FDs in F before minimizing the left sides. However, the set of FDs we have

is not a minimal cover:

AC → E, E → D, A → B, and AC → D.

From transitivity, the first two FDs imply the last FD, which can therefore be deleted

while preserving equivalence to F+. The important point to note is that AC → D

becomes redundant only after we replace ABCD → E with AC → E. If we minimize

left sides of FDs first and then check for redundant FDs, we are left with the first three

FDs in the preceding list, which is indeed a minimal cover for F.

Dependency-Preserving Decomposition into 3NF

Returning to the problem of obtaining a lossless-join, dependency-preserving decom-

position into 3NF relations, let R be a relation with a set F of FDs that is a minimal

cover, and let R1, R2, . . . , Rn be a lossless-join decomposition of R. For 1 ≤ i ≤ n,

suppose that each Ri is in 3NF and let Fi denote the projection of F onto the attributes

of Ri. Do the following:

Identify the set N of dependencies in F that are not preserved, that is, not

included in the closure of the union of Fis.

For each FD X → A in N , create a relation schema XA and add it to the decom-

position of R.

Obviously, every dependency in F is preserved if we replace R by the Ris plus the

schemas of the form XA added in this step. The Ris are given to be in 3NF. We can

show that each of the schemas XA is in 3NF as follows: Since X → A is in the minimal

cover F, Y → A does not hold for any Y that is a strict subset of X. Therefore, X

is a key for XA. Further, if any other dependencies hold over XA, the right side can

involve only attributes in X because A is a single attribute (because X → A is an FD

in a minimal cover). Since X is a key for XA, none of these additional dependencies

causes a violation of 3NF (although they might cause a violation of BCNF).

As an optimization, if the set N contains several FDs with the same left side, say,

X → A1, X → A2, . . . , X → An, we can replace them with a single equivalent

FD X → A1 . . . An. Therefore, we produce one relation schema XA1 . . . An, instead of

several schemas XA1, . . . , XAn, which is generally preferable.

Schema Refinement and Normal Forms 443

Consider the Contracts relation with attributes CSJDPQV and FDs JP → C, SD → P,

and J → S. If we decompose CSJDPQV into SDP and CSJDQV, then SDP is in BCNF,

but CSJDQV is not even in 3NF. So we decompose it further into JS and CJDQV.

The relation schemas SDP, JS, and CJDQV are in 3NF (in fact, in BCNF), and the

decomposition is lossless-join. However, the dependency JP → C is not preserved. This

problem can be addressed by adding a relation schema CJP to the decomposition.

3NF Synthesis

We have assumed that the design process starts with an ER diagram, and that our use

of FDs is primarily to guide decisions about decomposition. The algorithm for obtain-

ing a lossless-join, dependency-preserving decomposition was presented in the previous

section from this perspective—a lossless-join decomposition into 3NF is straightfor-

ward, and the algorithm addresses dependency-preservation by adding extra relation

schemas.

An alternative approach, called synthesis, is to take all the attributes over the original

relation R and a minimal cover F for the FDs that hold over it, and to add a relation

schema XA to the decomposition of R for each FD X → A in F.

The resulting collection of relation schemas is in 3NF and preserves all FDs. If it is

not a lossless-join decomposition of R, we can make it so by adding a relation schema

that contains just those attributes that appear in some key. This algorithm gives us

a lossless-join, dependency-preserving decomposition into 3NF, and has polynomial

complexity—polynomial algorithms are available for computing minimal covers, and

a key can be found in polynomial time (even though finding all keys is known to be

NP-complete). The existence of a polynomial algorithm for obtaining a lossless-join,

dependency-preserving decomposition into 3NF is surprising when we consider that

testing whether a given schema is in 3NF is NP-complete.

As an example, consider a relation ABC with FDs F = {A → B, C → B}. The first

step yields the relation schemas AB and BC. This is not a lossless-join decomposition

of ABC; AB ∩ BC is B, and neither B → A nor B → C is in F+. If we add a schema

AC, we have the lossless-join property as well. Although the collection of relations

AB, BC, and AC is a dependency-preserving, lossless-join decomposition of ABC, we

obtained it through a process of synthesis, rather than through a process of repeated

decomposition. We note that the decomposition produced by the synthesis approach

is heavily dependent on the minimal cover that is used.

As another example of the synthesis approach, consider the Contracts relation with

attributes CSJDPQV and the following FDs:

C → CSJDPQV, JP → C, SD → P, and J → S.

444 Chapter 15

This set of FDs is not a minimal cover, and so we must find one. We first replace C

→ CSJDPQV with the FDs:

C → S, C → J, C → D, C → P, C → Q, and C → V.

The FD C → P is implied by C → S, C → D, and SD → P; so we can delete it. The

FD C → S is implied by C → J and J → S; so we can delete it. This leaves us with a

minimal cover:

C → J, C → D, C → Q, C → V, JP → C, SD → P, and J → S.

Using the algorithm for ensuring dependency-preservation, we obtain the relational

schema CJ, CD, CQ, CV, CJP, SDP, and JS. We can improve this schema by combining

relations for which C is the key into CDJPQV. In addition, we have SDP and JS in

our decomposition. Since one of these relations (CDJPQV) is a superkey, we are done.

Comparing this decomposition with the one that we obtained earlier in this section,

we find that they are quite close, with the only difference being that one of them has

CDJPQV instead of CJP and CJDQV. In general, however, there could be significant

differences.

Database designers typically use a conceptual design methodology (e.g., ER design)

to arrive at an initial database design. Given this, the approach of repeated decompo-

sitions to rectify instances of redundancy is likely to be the most natural use of FDs

and normalization techniques. However, a designer can also consider the alternative

designs suggested by the synthesis approach.

15.8 OTHER KINDS OF DEPENDENCIES *

FDs are probably the most common and important kind of constraint from the point

of view of database design. However, there are several other kinds of dependencies.

In particular, there is a well-developed theory for database design using multivalued

dependencies and join dependencies. By taking such dependencies into account, we

can identify potential redundancy problems that cannot be detected using FDs alone.

This section illustrates the kinds of redundancy that can be detected using multivalued

dependencies. Our main observation, however, is that simple guidelines (which can be

checked using only FD reasoning) can tell us whether we even need to worry about

complex constraints such as multivalued and join dependencies. We also comment on

the role of inclusion dependencies in database design.

Schema Refinement and Normal Forms 445

15.8.1 Multivalued Dependencies

Suppose that we have a relation with attributes course, teacher, and book, which we

denote as CTB. The meaning of a tuple is that teacher T can teach course C, and book

B is a recommended text for the course. There are no FDs; the key is CTB. However,

the recommended texts for a course are independent of the instructor. The instance

shown in Figure 15.13 illustrates this situation.

course teacher book

Physics101 Green Mechanics

Physics101 Green Optics

Physics101 Brown Mechanics

Physics101 Brown Optics

Math301 Green Mechanics

Math301 Green Vectors

Math301 Green Geometry

Figure 15.13 BCNF Relation with Redundancy That Is Revealed by MVDs

There are three points to note here:

The relation schema CTB is in BCNF; thus we would not consider decomposing

it further if we looked only at the FDs that hold over CTB.

There is redundancy. The fact that Green can teach Physics101 is recorded once

per recommended text for the course. Similarly, the fact that Optics is a text for

Physics101 is recorded once per potential teacher.

The redundancy can be eliminated by decomposing CTB into CT and CB.

The redundancy in this example is due to the constraint that the texts for a course are

independent of the instructors, which cannot be expressed in terms of FDs. This con-

straint is an example of a multivalued dependency, or MVD. Ideally, we should model

this situation using two binary relationship sets, Instructors with attributes CT and

Text with attributes CB. Because these are two essentially independent relationships,

modeling them with a single ternary relationship set with attributes CTB is inappropri-

ate. (See Section 2.5.3 for a further discussion of ternary versus binary relationships.)

Given the subjectivity of ER design, however, we might create a ternary relationship.

A careful analysis of the MVD information would then reveal the problem.

Let R be a relation schema and let X and Y be subsets of the attributes of R. Intuitively,

the multivalued dependency X →→ Y is said to hold over R if, in every legal

446 Chapter 15

instance r of R, each X value is associated with a set of Y values and this set is

independent of the values in the other attributes.

Formally, if the MVD X →→ Y holds over R and Z = R−XY , the following must be

true for every legal instance r of R:

If t1 ∈ r, t2 ∈ r and t1.X = t2.X, then there must be some t3 ∈ r such that

t1.XY = t3.XY and t2.Z = t3.Z.

Figure 15.14 illustrates this definition. If we are given the first two tuples and told that

the MVD X →→ Y holds over this relation, we can infer that the relation instance

must also contain the third tuple. Indeed, by interchanging the roles of the first two

tuples—treating the first tuple as t2 and the second tuple as t1—we can deduce that

the tuple t4 must also be in the relation instance.

X Y Z

a b1 c1 — tuple t1
a b2 c2 — tuple t2

a b1 c2 — tuple t3
a b2 c1 — tuple t4

Figure 15.14 Illustration of MVD Definition

This table suggests another way to think about MVDs: If X →→ Y holds over R, then

πY Z(σX=x(R)) = πY (σX=x(R)) × πZ(σX=x(R)) in every legal instance of R, for

any value x that appears in the X column of R. In other words, consider groups of

tuples in R with the same X-value, for each X-value. In each such group consider the

projection onto the attributes YZ. This projection must be equal to the cross-product

of the projections onto Y and Z. That is, for a given X-value, the Y-values and Z-

values are independent. (From this definition it is easy to see that X →→ Y must hold

whenever X → Y holds. If the FD X → Y holds, there is exactly one Y-value for a

given X-value, and the conditions in the MVD definition hold trivially. The converse

does not hold, as Figure 15.14 illustrates.)

Returning to our CTB example, the constraint that course texts are independent of

instructors can be expressed as C →→ T. In terms of the definition of MVDs, this

constraint can be read as follows:

“If (there is a tuple showing that) C is taught by teacher T,

and (there is a tuple showing that) C has book B as text,

then (there is a tuple showing that) C is taught by T and has text B.

Schema Refinement and Normal Forms 447

Given a set of FDs and MVDs, in general we can infer that several additional FDs

and MVDs hold. A sound and complete set of inference rules consists of the three

Armstrong Axioms plus five additional rules. Three of the additional rules involve

only MVDs:

MVD Complementation: If X →→ Y, then X →→ R − XY .

MVD Augmentation: If X →→ Y and W ⊇ Z, then WX →→ YZ.

MVD Transitivity: If X →→ Y and Y →→ Z, then X →→ (Z − Y).

As an example of the use of these rules, since we have C →→ T over CTB, MVD

complementation allows us to infer that C →→ CTB −CT as well, that is, C →→ B.

The remaining two rules relate FDs and MVDs:

Replication: If X → Y, then X →→ Y.

Coalescence: If X →→ Y and there is a W such that W ∩ Y is empty, W → Z,

and Y ⊇ Z, then X → Z.

Observe that replication states that every FD is also an MVD.

15.8.2 Fourth Normal Form

Fourth normal form is a direct generalization of BCNF. Let R be a relation schema,

X and Y be nonempty subsets of the attributes of R, and F be a set of dependencies

that includes both FDs and MVDs. R is said to be in fourth normal form (4NF)

if for every MVD X →→ Y that holds over R, one of the following statements is true:

Y ⊆ X or XY = R, or

X is a superkey.

In reading this definition, it is important to understand that the definition of a key

has not changed—the key must uniquely determine all attributes through FDs alone.

X →→ Y is a trivial MVD if Y ⊆ X ⊆ R or XY = R; such MVDs always hold.

The relation CTB is not in 4NF because C →→ T is a nontrivial MVD and C is not

a key. We can eliminate the resulting redundancy by decomposing CTB into CT and

CB; each of these relations is then in 4NF.

To use MVD information fully, we must understand the theory of MVDs. However,

the following result due to Date and Fagin identifies conditions—detected using only

FD information!—under which we can safely ignore MVD information. That is, using

MVD information in addition to the FD information will not reveal any redundancy.

Therefore, if these conditions hold, we do not even need to identify all MVDs.

448 Chapter 15

If a relation schema is in BCNF, and at least one of its keys consists of a

single attribute, it is also in 4NF.

An important assumption is implicit in any application of the preceding result: The

set of FDs identified thus far is indeed the set of all FDs that hold over the relation.

This assumption is important because the result relies on the relation being in BCNF,

which in turn depends on the set of FDs that hold over the relation.

We illustrate this point using an example. Consider a relation schema ABCD and

suppose that the FD A → BCD and the MVD B →→ C are given. Considering only

these dependencies, this relation schema appears to be a counter example to the result.

The relation has a simple key, appears to be in BCNF, and yet is not in 4NF because

B →→ C causes a violation of the 4NF conditions. But let’s take a closer look.

Figure 15.15 shows three tuples from an instance of ABCD that satisfies the given

MVD B →→ C. From the definition of an MVD, given tuples t1 and t2, it follows

B C A D

b c1 a1 d1 — tuple t1
b c2 a2 d2 — tuple t2
b c1 a2 d2 — tuple t3

Figure 15.15 Three Tuples from a Legal Instance of ABCD

that tuple t3 must also be included in the instance. Consider tuples t2 and t3. From

the given FD A → BCD and the fact that these tuples have the same A-value, we can

deduce that c1 = c2. Thus, we see that the FD B → C must hold over ABCD whenever

the FD A → BCD and the MVD B →→ C hold. If B → C holds, the relation ABCD

is not in BCNF (unless additional FDs hold that make B a key)!

Thus, the apparent counter example is really not a counter example—rather, it illus-

trates the importance of correctly identifying all FDs that hold over a relation. In

this example A → BCD is not the only FD; the FD B → C also holds but was not

identified initially. Given a set of FDs and MVDs, the inference rules can be used to

infer additional FDs (and MVDs); to apply the Date-Fagin result without first using

the MVD inference rules, we must be certain that we have identified all the FDs.

In summary, the Date-Fagin result offers a convenient way to check that a relation is

in 4NF (without reasoning about MVDs) if we are confident that we have identified

all FDs. At this point the reader is invited to go over the examples we have discussed

in this chapter and see if there is a relation that is not in 4NF.

Schema Refinement and Normal Forms 449

15.8.3 Join Dependencies

A join dependency is a further generalization of MVDs. A join dependency (JD)

⊲⊳ {R1, . . . , Rn} is said to hold over a relation R if R1, . . . , Rn is a lossless-join

decomposition of R.

An MVD X →→ Y over a relation R can be expressed as the join dependency ⊲⊳ {XY,

X(R−Y)}. As an example, in the CTB relation, the MVD C →→ T can be expressed

as the join dependency ⊲⊳ {CT, CB}.

Unlike FDs and MVDs, there is no set of sound and complete inference rules for JDs.

15.8.4 Fifth Normal Form

A relation schema R is said to be in fifth normal form (5NF) if for every JD

⊲⊳ {R1, . . . , Rn} that holds over R, one of the following statements is true:

Ri = R for some i, or

The JD is implied by the set of those FDs over R in which the left side is a key

for R.

The second condition deserves some explanation, since we have not presented inference

rules for FDs and JDs taken together. Intuitively, we must be able to show that the

decomposition of R into {R1, . . . , Rn} is lossless-join whenever the key dependen-

cies (FDs in which the left side is a key for R) hold. ⊲⊳ {R1, . . . , Rn} is a trivial

JD if Ri = R for some i; such a JD always holds.

The following result, also due to Date and Fagin, identifies conditions—again, detected

using only FD information—under which we can safely ignore JD information.

If a relation schema is in 3NF and each of its keys consists of a single attribute,

it is also in 5NF.

The conditions identified in this result are sufficient for a relation to be in 5NF, but not

necessary. The result can be very useful in practice because it allows us to conclude

that a relation is in 5NF without ever identifying the MVDs and JDs that may hold

over the relation.

15.8.5 Inclusion Dependencies

MVDs and JDs can be used to guide database design, as we have seen, although they

are less common than FDs and harder to recognize and reason about. In contrast,

450 Chapter 15

inclusion dependencies are very intuitive and quite common. However, they typically

have little influence on database design (beyond the ER design stage).

Informally, an inclusion dependency is a statement of the form that some columns of

a relation are contained in other columns (usually of a second relation). A foreign key

constraint is an example of an inclusion dependency; the referring column(s) in one

relation must be contained in the primary key column(s) of the referenced relation. As

another example, if R and S are two relations obtained by translating two entity sets

such that every R entity is also an S entity, we would have an inclusion dependency;

projecting R on its key attributes yields a relation that is contained in the relation

obtained by projecting S on its key attributes.

The main point to bear in mind is that we should not split groups of attributes that

participate in an inclusion dependency. For example, if we have an inclusion depen-

dency AB ⊆ CD, while decomposing the relation schema containing AB, we should

ensure that at least one of the schemas obtained in the decomposition contains both

A and B. Otherwise, we cannot check the inclusion dependency AB ⊆ CD without

reconstructing the relation containing AB.

Most inclusion dependencies in practice are key-based, that is, involve only keys. For-

eign key constraints are a good example of key-based inclusion dependencies. An ER

diagram that involves ISA hierarchies also leads to key-based inclusion dependencies.

If all inclusion dependencies are key-based, we rarely have to worry about splitting

attribute groups that participate in inclusions, since decompositions usually do not

split the primary key. Note, however, that going from 3NF to BCNF always involves

splitting some key (hopefully not the primary key!), since the dependency guiding the

split is of the form X → A where A is part of a key.

15.9 POINTS TO REVIEW

Redundancy, storing the same information several times in a database, can result

in update anomalies (all copies need to be updated), insertion anomalies (certain

information cannot be stored unless other information is stored as well), and

deletion anomalies (deleting some information means loss of other information as

well). We can reduce redundancy by replacing a relation schema R with several

smaller relation schemas. This process is called decomposition. (Section 15.1)

A functional dependency X → Y is a type of IC. It says that if two tuples agree

upon (i.e., have the same) values in the X attributes, then they also agree upon

the values in the Y attributes. (Section 15.2)

FDs can help to refine subjective decisions made during conceptual design. (Sec-

tion 15.3)

Schema Refinement and Normal Forms 451

An FD f is implied by a set F of FDs if for all relation instances where F holds,

f also holds. The closure of a set F of FDs is the set of all FDs F+ implied by

F. Armstrong’s Axioms are a sound and complete set of rules to generate all FDs

in the closure. An FD X → Y is trivial if X contains only attributes that also

appear in Y. The attribute closure X+ of a set of attributes X with respect to a

set of FDs F is the set of attributes A such that X → A can be inferred using

Armstrong’s Axioms. (Section 15.4)

A normal form is a property of a relation schema indicating the type of redundancy

that the relation schema exhibits. If a relation schema is in Boyce-Codd normal

form (BCNF), then the only nontrivial FDs are key constraints. If a relation is

in third normal form (3NF), then all nontrivial FDs are key constraints or their

right side is part of a candidate key. Thus, every relation that is in BCNF is also

in 3NF, but not vice versa. (Section 15.5)

A decomposition of a relation schema R into two relation schemas X and Y is a

lossless-join decomposition with respect to a set of FDs F if for any instance r of

R that satisfies the FDs in F , πX(r) ⊲⊳ πY (r) = r. The decomposition of R

into X and Y is lossless-join if and only if F+ contains either X ∩Y → X or the

FD X ∩ Y → Y . The decomposition is dependency-preserving if we can enforce

all FDs that are given to hold on R by simply enforcing FDs on X and FDs on Y

independently (i.e., without joining X and Y). (Section 15.6)

There is an algorithm to obtain a lossless-join decomposition of a relation into

a collection of BCNF relation schemas, but sometimes there is no dependency-

preserving decomposition into BCNF schemas. We also discussed an algorithm

for decomposing a relation schema into a collection of 3NF relation schemas. There

is always a lossless-join, dependency-preserving decomposition into a collection of

3NF relation schemas. A minimal cover of a set of FDs is an equivalent set of

FDs that has certain minimality properties (intuitively, the set of FDs is as small

as possible). Instead of decomposing a relation schema, we can also synthesize a

corresponding collection of 3NF relation schemas. (Section 15.7)

Other kinds of dependencies include multivalued dependencies, join dependencies,

and inclusion dependencies. Fourth and fifth normal forms are more stringent

than BCNF, and eliminate redundancy due to multivalued and join dependencies,

respectively. (Section 15.8)

EXERCISES

Exercise 15.1 Briefly answer the following questions.

1. Define the term functional dependency.

2. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which

R is in 1NF but not in 2NF.

452 Chapter 15

3. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which

R is in 2NF but not in 3NF.

4. Consider the relation schema R(A,B,C), which has the FD B → C. If A is a candidate

key for R, is it possible for R to be in BCNF? If so, under what conditions? If not,

explain why not.

5. Suppose that we have a relation schema R(A,B,C) representing a relationship between

two entity sets with keys A and B, respectively, and suppose that R has (among others)

the FDs A → B and B → A. Explain what such a pair of dependencies means (i.e., what

they imply about the relationship that the relation models).

Exercise 15.2 Consider a relation R with five attributes ABCDE. You are given the following

dependencies: A → B, BC → E, and ED → A.

1. List all keys for R.

2. Is R in 3NF?

3. Is R in BCNF?

Exercise 15.3 Consider the following collection of relations and dependencies. Assume that

each relation is obtained through decomposition from a relation with attributes ABCDEFGHI

and that all the known dependencies over relation ABCDEFGHI are listed for each question.

(The questions are independent of each other, obviously, since the given dependencies over

ABCDEFGHI are different.) For each (sub) relation: (a) State the strongest normal form

that the relation is in. (b) If it is not in BCNF, decompose it into a collection of BCNF

relations.

1. R1(A,C,B,D,E), A → B, C → D

2. R2(A,B,F), AC → E, B → F

3. R3(A,D), D → G, G → H

4. R4(D,C,H,G), A → I, I → A

5. R5(A,I,C,E)

Exercise 15.4 Suppose that we have the following three tuples in a legal instance of a relation

schema S with three attributes ABC (listed in order): (1,2,3), (4,2,3), and (5,3,3).

1. Which of the following dependencies can you infer does not hold over schema S?

(a) A → B (b) BC → A (c) B → C

2. Can you identify any dependencies that hold over S?

Exercise 15.5 Suppose you are given a relation R with four attributes, ABCD. For each of

the following sets of FDs, assuming those are the only dependencies that hold for R, do the

following: (a) Identify the candidate key(s) for R. (b) Identify the best normal form that R

satisfies (1NF, 2NF, 3NF, or BCNF). (c) If R is not in BCNF, decompose it into a set of

BCNF relations that preserve the dependencies.

1. C → D, C → A, B → C

Schema Refinement and Normal Forms 453

2. B → C, D → A

3. ABC → D, D → A

4. A → B, BC → D, A → C

5. AB → C, AB → D, C → A, D → B

Exercise 15.6 Consider the attribute set R = ABCDEGH and the FD set F = {AB → C,

AC → B, AD → E, B → D, BC → A, E → G}.

1. For each of the following attribute sets, do the following: (i) Compute the set of depen-

dencies that hold over the set and write down a minimal cover. (ii) Name the strongest

normal form that is not violated by the relation containing these attributes. (iii) De-

compose it into a collection of BCNF relations if it is not in BCNF.

(a) ABC (b) ABCD (c) ABCEG (d) DCEGH (e) ACEH

2. Which of the following decompositions of R = ABCDEG, with the same set of depen-

dencies F , is (a) dependency-preserving? (b) lossless-join?

(a) {AB, BC, ABDE, EG }

(b) {ABC, ACDE, ADG }

Exercise 15.7 Let R be decomposed into R1, R2, . . ., Rn. Let F be a set of FDs on R.

1. Define what it means for F to be preserved in the set of decomposed relations.

2. Describe a polynomial-time algorithm to test dependency-preservation.

3. Projecting the FDs stated over a set of attributes X onto a subset of attributes Y requires

that we consider the closure of the FDs. Give an example where considering the closure

is important in testing dependency-preservation; that is, considering just the given FDs

gives incorrect results.

Exercise 15.8 Consider a relation R that has three attributes ABC. It is decomposed into

relations R1 with attributes AB and R2 with attributes BC.

1. State the definition of a lossless-join decomposition with respect to this example. Answer

this question concisely by writing a relational algebra equation involving R, R1, and R2.

2. Suppose that B →→ C. Is the decomposition of R into R1 and R2 lossless-join? Reconcile

your answer with the observation that neither of the FDs R1∩R2 → R1 nor R1∩R2 → R2

hold, in light of the simple test offering a necessary and sufficient condition for lossless-

join decomposition into two relations in Section 15.6.1.

3. If you are given the following instances of R1 and R2, what can you say about the

instance of R from which these were obtained? Answer this question by listing tuples

that are definitely in R and listing tuples that are possibly in R.

Instance of R1 = {(5,1), (6,1)}

Instance of R2 = {(1,8), (1,9)}

Can you say that attribute B definitely is or is not a key for R?

454 Chapter 15

Exercise 15.9 Suppose you are given a relation R(A,B,C,D). For each of the following sets

of FDs, assuming they are the only dependencies that hold for R, do the following: (a) Identify

the candidate key(s) for R. (b) State whether or not the proposed decomposition of R into

smaller relations is a good decomposition, and briefly explain why or why not.

1. B → C, D → A; decompose into BC and AD.

2. AB → C, C → A, C → D; decompose into ACD and BC.

3. A → BC, C → AD; decompose into ABC and AD.

4. A → B, B → C, C → D; decompose into AB and ACD.

5. A → B, B → C, C → D; decompose into AB, AD and CD.

Exercise 15.10 Suppose that we have the following four tuples in a relation S with three

attributes ABC: (1,2,3), (4,2,3), (5,3,3), (5,3,4). Which of the following functional (→) and

multivalued (→→) dependencies can you infer does not hold over relation S?

1. A → B

2. A →→ B

3. BC → A

4. BC →→ A

5. B → C

6. B →→ C

Exercise 15.11 Consider a relation R with five attributes ABCDE.

1. For each of the following instances of R, state whether (a) it violates the FD BC → D,

and (b) it violates the MVD BC →→ D:

(a) { } (i.e., empty relation)

(b) {(a,2,3,4,5), (2,a,3,5,5)}

(c) {(a,2,3,4,5), (2,a,3,5,5), (a,2,3,4,6)}

(d) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5)}

(e) {(a,2,3,4,5), (2,a,3,7,5), (a,2,3,4,6)}

(f) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5), (a,2,3,6,6)}

(g) {(a,2,3,4,5), (a,2,3,6,5), (a,2,3,6,6), (a,2,3,4,6)}

2. If each instance for R listed above is legal, what can you say about the FD A → B?

Exercise 15.12 JDs are motivated by the fact that sometimes a relation that cannot be

decomposed into two smaller relations in a lossless-join manner can be so decomposed into

three or more relations. An example is a relation with attributes supplier, part, and project,

denoted SPJ, with no FDs or MVDs. The JD ⊲⊳ {SP, PJ, JS} holds.

From the JD, the set of relation schemes SP, PJ, and JS is a lossless-join decomposition of

SPJ. Construct an instance of SPJ to illustrate that no two of these schemes suffice.

Schema Refinement and Normal Forms 455

Exercise 15.13 Consider a relation R with attributes ABCDE. Let the following FDs be

given: A → BC, BC → E, and E → DA. Similarly, let S be a relation with attributes ABCDE

and let the following FDs be given: A → BC, B → E, and E → DA. (Only the second

dependency differs from those that hold over R.) You do not know whether or which other

(join) dependencies hold.

1. Is R in BCNF?

2. Is R in 4NF?

3. Is R in 5NF?

4. Is S in BCNF?

5. Is S in 4NF?

6. Is S in 5NF?

Exercise 15.14 Let us say that an FD X → Y is simple if Y is a single attribute.

1. Replace the FD AB → CD by the smallest equivalent collection of simple FDs.

2. Prove that every FD X → Y in a set of FDs F can be replaced by a set of simple FDs

such that F+ is equal to the closure of the new set of FDs.

Exercise 15.15 Prove that Armstrong’s Axioms are sound and complete for FD inference.

That is, show that repeated application of these axioms on a set F of FDs produces exactly

the dependencies in F+.

Exercise 15.16 Describe a linear-time (in the size of the set of FDs, where the size of each

FD is the number of attributes involved) algorithm for finding the attribute closure of a set

of attributes with respect to a set of FDs.

Exercise 15.17 Consider a scheme R with FDs F that is decomposed into schemes with

attributes X and Y. Show that this is dependency-preserving if F ⊆ (FX ∪ FY)+.

Exercise 15.18 Let R be a relation schema with a set F of FDs. Prove that the decom-

position of R into R1 and R2 is lossless-join if and only if F+ contains R1 ∩ R2 → R1 or

R1 ∩ R2 → R2.

Exercise 15.19 Prove that the optimization of the algorithm for lossless-join, dependency-

preserving decomposition into 3NF relations (Section 15.7.2) is correct.

Exercise 15.20 Prove that the 3NF synthesis algorithm produces a lossless-join decomposi-

tion of the relation containing all the original attributes.

Exercise 15.21 Prove that an MVD X →→ Y over a relation R can be expressed as the

join dependency ⊲⊳ {XY, X(R − Y)}.

Exercise 15.22 Prove that if R has only one key, it is in BCNF if and only if it is in 3NF.

Exercise 15.23 Prove that if R is in 3NF and every key is simple, then R is in BCNF.

Exercise 15.24 Prove these statements:

1. If a relation scheme is in BCNF and at least one of its keys consists of a single attribute,

it is also in 4NF.

2. If a relation scheme is in 3NF and each key has a single attribute, it is also in 5NF.

Exercise 15.25 Give an algorithm for testing whether a relation scheme is in BCNF. The

algorithm should be polynomial in the size of the set of given FDs. (The size is the sum over

all FDs of the number of attributes that appear in the FD.) Is there a polynomial algorithm

for testing whether a relation scheme is in 3NF?

456 Chapter 15

PROJECT-BASED EXERCISES

Exercise 15.26 Minibase provides a tool called Designview for doing database design us-

ing FDs. It lets you check whether a relation is in a particular normal form, test whether

decompositions have nice properties, compute attribute closures, try several decomposition

sequences and switch between them, generate SQL statements to create the final database

schema, and so on.

1. Use Designview to check your answers to exercises that call for computing closures,

testing normal forms, decomposing into a desired normal form, and so on.

2. (Note to instructors: This exercise should be made more specific by providing additional

details. See Appendix B.) Apply Designview to a large, real-world design problem.

BIBLIOGRAPHIC NOTES

Textbook presentations of dependency theory and its use in database design include [3, 38,

436, 443, 656]. Good survey articles on the topic include [663, 355].

FDs were introduced in [156], along with the concept of 3NF, and axioms for inferring FDs

were presented in [31]. BCNF was introduced in [157]. The concept of a legal relation instance

and dependency satisfaction are studied formally in [279]. FDs were generalized to semantic

data models in [674].

Finding a key is shown to be NP-complete in [432]. Lossless-join decompositions were studied

in [24, 437, 546]. Dependency-preserving decompositions were studied in [61]. [68] introduced

minimal covers. Decomposition into 3NF is studied by [68, 85] and decomposition into BCNF

is addressed in [651]. [351] shows that testing whether a relation is in 3NF is NP-complete.

[215] introduced 4NF and discussed decomposition into 4NF. Fagin introduced other normal

forms in [216] (project-join normal form) and [217] (domain-key normal form). In contrast to

the extensive study of vertical decompositions, there has been relatively little formal investi-

gation of horizontal decompositions. [175] investigates horizontal decompositions.

MVDs were discovered independently by Delobel [177], Fagin [215], and Zaniolo [690]. Axioms

for FDs and MVDs were presented in [60]. [516] shows that there is no axiomatization for

JDs, although [575] provides an axiomatization for a more general class of dependencies. The

sufficient conditions for 4NF and 5NF in terms of FDs that were discussed in Section 15.8 are

from [171]. An approach to database design that uses dependency information to construct

sample relation instances is described in [442, 443].

